US009171041B1

a2z United States Patent (10) Patent No.: US 9,171,041 B1
Narayanan et al. (45) Date of Patent: Oct. 27,2015
(54) RLE-AWARE OPTIMIZATION OF SQL 8,171,031 B2* 5/2012 Tankovich etal. 707/741
QUERIES 8,356,027 B2* 1/2013 Jac_ecksch et al. 707/713
2004/0034616 Al* 2/2004 Witkowski et al. 707/1
. . 2005/0192943 Al* 9/2005 Siddiqui etal. 707/3
(75) Inventors: Sivaramakrishnan Narayanan, 2008/0071818 Al* 3/2008 Apanowiczetal. ... 707/101
Sunnyvale, CA (US); Florian Michael 2010/0088309 Al* 4/2010 Petculescu et al. 707/714
Waas, San Francisco, CA (US) 2011/0131199 Al* 6/2011 Simon et al. ... 707/714
2011/0307471 Al* 12/2011 Sheinin 707/714
. *
(7% Assunce: PivotalSoftware, Tnc, Pio Ao, A 01LTS1 AL 123011 Sl L 20
(US) 2012/0054236 Al* 3/2012 Branscome etal. 707/770
2012/0173517 AL* 7/2012 Langetal. ..oocooorrin. 707/722
(*) Notice: Subject to any disclaimer, the term of this .o .
patent is extended or adjusted under 35 cited by examiner
US.C.154(b) by 31 days. Primary Examiner — Leslie Wong
(21) Appl. No.: 13/248,536 (74) Allorney, Agenl, or Firm — Fish & Richardson P.C.
(22) Filed: Sep.29,2011 &7 ABSTRACT
SQL queries are optimized to operate directly on compressed
(51) Int.CL data (and obtain the correct result) rather than requiring that
GOGF 17/30 (2006.01) the data be first decompressed prior to processing a query.
(52) US.CL Certain characteristic pattern trees are mapped against a logi-
CPC ... GOGF 17/30463 (2013.01); GOGF 17/30442 cal input query plan that includes certain logical operators
(2013.01) such as a DECOMPRESS that precedes a JOIN or a
(58) Field of Classification Search GROUPBY in association with a COUNT to identify
CPC ...cceecveinn GO6F 17/30463; GO6F 17/30433; instances in the plan that match a characteristic pattern. Upon
GO6F 17/30474; GO6F 17/30442; GO6F locating a match, the input query plan is transformed into a
17/30448; GOGF 17/30454; GOGF 17/3046 logically equivalent plan that operates correctly on com-
See application file for complete search history. pressed data, by analyzing the interplay of the semantics of
logical query operations with the compressed data and sub-
(56) References Cited stituting less costly structures and operations. DECOM-

U.S. PATENT DOCUMENTS

6,760,724 B1 *
7,167,853 B2 *
7,773,815 B2 *
8,126,870 B2*

7/2004 Chakrabarti et al. 1/1
1/2007 Zaharioudakis et al.
8/2010 Shenetal.ccocooveen. 382/232
2/2012 Chowdhuri et al. 707/713

*- %0

GROUP BY

N

PRESS operations are moved to operate subsequent to a JOIN
or eliminated altogether, and COUNT operations are replaced
by a different operation, such as SUM, that is logically
equivalent for compressed data.

16 Claims, 9 Drawing Sheets

948

946 942

SUM ($2)

(31, 82)

US 9,171,041 B1

Sheet 1 of 9

Oct. 27, 2015

U.S. Patent

SPON 310WY

(Mv Joud)
T 24n3di4

SpPON 210W>aY

9PON 210WaY

o OO
N-¥01T—7 9-v0T_J % vv0T 1
Bl SPON J91SEN
ot
_/
A0t 0T

US 9,171,041 B1

Sheet 2 of 9

Oct. 27, 2015

U.S. Patent

Z 94n314

43ZINILdO AHYIND
yez —
- AYONIN -
¢cc ;
, u _u._“Nj |
T[yel]ie) :
90€4431U| JJO0MIAN 1ndinQ/induj Ndd
91z ~ _/]
cle 0T¢

i

U.S. Patent Oct. 27, 2015 Sheet 3 of 9 US 9,171,041 B1

(T.H)

Al
—
(4p]

320

GET (T)
AN 304

./
© (49
o o
(ap] >3
D
= LL
o
YN
3
A
i,
/G
(q\|
(@]
o

US 9,171,041 B1

Sheet 4 of 9

Oct. 27, 2015

U.S. Patent

cly

0]87

¥ 24nBi4

1281 7%

0EY

NIOP

h H)139

_

ssa.dwoda

qu

b
.

U.S. Patent Oct. 27, 2015 Sheet 5 of 9 US 9,171,041 B1

\
J
\510

<
' ‘ < m
o =) 1O
P o
T € 9 N 5
* &)
2R ir
LO
; (<23
o
< — \
~™— Lr)
Lo o0
(@)
O
S
J o
"o\ e ~
LO
Y &
2 z 5
i b ZEmm— (_)) \ J o
T >
i

|
1

506
502

U.S. Patent Oct. 27, 2015 Sheet 6 of 9 US 9,171,041 B1

[T)
&
N >
& &
5
v
o
o
—

$1
$1=%2
Decompress
* $6

J/m
]

|

[

Figure 6

$0

JOIN

$1
($1, $3)

610

Decompress
* $4

[
[

US 9,171,041 B1

Sheet 7 of 9

Oct. 27, 2015

U.S. Patent

(6% 2$)

Vel

/. 2inbi4

¢cl

/

SE—
<o}
&
*

ﬁ (€$°1$) w

\ﬁ G$.€$°1$
0c/

004

0€L

NIOP

)
$52.dW029(] w

)
. w

"SR

¥$ -

)i

US 9,171,041 B1

Sheet 8 of 9

Oct. 27, 2015

U.S. Patent

h (L vL)

°L) 139

—

)

H..Ol_lnan_.OMH_

J1.4d UH

g a4nBiH

(I'd I'y)

~—

NIOr

028 \h ssaidwoos

IBEHe)

S

(°") 139

018

cl8

US 9,171,041 B1

Sheet 9 of 9

Oct. 27, 2015

U.S. Patent

(2$°19)

g6 ©.nbi4

€9«

816

S

Ad dNOYHO

0%«

0

V6 2.nbi4

2$ 1S “ €8«

16
. (
()
ﬁ
! ssaidwods

ﬁ@ INNOD A9 dNOYD

g
Mo
M

[-
0v6

US 9,171,041 B1

1

RLE-AWARE OPTIMIZATION OF SQL
QUERIES

BACKGROUND

This invention relates generally to database query optimi-
zation, and more generally to optimization of queries for
databases having compressed data.

In order to conserve resources and processing time, many
databases are compressed at the storage level using, for
example, run-length encoding (RLE) compression or other
compression techniques. Compression conserves storage
space and reduces the number of read requests. However,
queries conventionally decompress compressed stored data
and operate on uncompressed data. Thus, in order to execute
a query on compressed databases, the data must be first
decompressed and the query executed multiple times on
decompressed data that may be the same. The multiple inter-
mediate results must then be aggregated to obtain an answer.
This is inefficient, and results in substantial and costly pro-
cessing and long overall response times.

It is desirable to provide systems and methods that address
these and other known problems of executing queries on
compressed data by minimizing computation costs and
reducing query response time, and it is to these ends that the
invention is directed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a conventional shared nothing architec-
ture for a distributed database of the type in which the inven-
tion may be employed;

FIG. 2 illustrates a master node of the shared nothing
database of FIG. 1 which may incorporate an embodiment of
the invention;

FIG. 3 is an example of a logical query plan for a database;

FIG. 4 illustrates the logical query plan of FIG. 3 for use on
compressed relations;

FIGS. 5A and 5B illustrate, respectively, an example of a
query plan pattern and a transformation of the query plan into
a logically equivalent query plan;

FIG. 6 illustrates a query plan pattern that decompresses
compressed data and includes a JOIN operator which may be
transformed and optimized in accordance with the invention;

FIG. 7 illustrates a transformation and optimization of the
query plan of FIG. 6 in accordance with an embodiment of the
invention;

FIG. 8 illustrates the transformation of FIG. 7 applied to the
query plan of FIG. 4 in accordance with another embodiment
of the invention; and

FIGS. 9A and 9B illustrate, respectively, another query
plan pattern for use with compressed data and a correspond-
ing transformation of the plan in accordance with an embodi-
ment of the invention, where the transformed plan uses a
different query operator to enable operation directly on com-
pressed relations.

DESCRIPTION OF PREFERRED
EMBODIMENTS

The invention is particularly well adapted for use with
distributed database systems which compresses data at the
storage level using RLE-based compression and structured
query language (SQL) queries, and will be described in that
environment. It will become apparent, however, that this is
illustrative of only one utility of the invention and that the

10

15

20

25

30

35

40

45

50

55

60

65

2

invention may be employed with other databases, with other
types of compression, and with other query languages.

FIG. 1 illustrates a shared-nothing network architecture of
a logical database 100 of the type with which the invention
may be employed. The network may include a master node
102 which connects to and manages a plurality of shared-
nothing nodes 104-A through 104-N. Each node may com-
prise a plurality of database segments (database instances)
including one or more primary databases and one or more
mirror databases. Data may be stored in the segments in
compressed form using run length encoding (RLE) compres-
sion, for example, and accessed using queries such as SQL
queries. Clients 106 may interact with the database through
the master node 102.

FIG. 2 illustrates a master node 202 configured to imple-
ment operations in accordance with the invention. The master
node may comprise a host computer system 210 (which may
be a multi-processor system comprising a plurality of CPUs)
connected to input/output (1/O) devices 212 by abus 214. The
1/O devices may be standard computer system input and
output devices. A network interface circuit 216 may also be
connected to bus 214 to allow the master node to operate in a
networked environment. Clients 106 may communicate with
the distributed database through the master node (see FIG. 1)
using either the I/O devices or the network interface circuit.
The master node may also have a memory 220 connected to
the bus that embodies executable instructions to control the
operation of the host computer system of the node and to
perform processes in accordance with the invention. Included
in memory 220 may be a main memory 222 and a query
optimizer 224 comprising instructions that control the CPU to
perform query optimization processes in accordance with the
invention.

As will be described, the invention affords optimization of
queries on databases employing RLE-based compression at
the storage level. It provides a framework to exploit RLE
compression during query optimization to optimize the que-
ries to minimize computation costs and reduce overall
response time. Optimization processes in accordance with
embodiments of the invention identify logical query plans, or
portions thereof, that bind to certain predetermined patterns
and include certain predetermined query operators and/or
aggregation operations involving RLE-compressed relations
to which logical transformations may be applied that rear-
range the query plan and/or use different query operators to
produce an optimized logically equivalent plan. The logical
query plans are then transformed into the optimized logically
equivalent plans. The transformed plans enable optimized
queries to operate directly on compressed data and produce
correct results without first having to decompress the data.
This minimizes computation costs and reduces overall
response time by avoiding the necessity of performing mul-
tiple query computations on uncompressed data that is the
same.

A logical query plan comprises a tree of query language
operators that correspond to relational operations such as
GET, COMPRESS, DECOMPRESS, JOIN, GROUPBY, and
others. The output of each operator is a relation, and each
operator produces a set of output columns. For instance, a
GET operator corresponds to reading a relation from a stor-
age device and presenting the data in tabular form. This
operator has no children. The JOIN operator has two children
which correspond to its inputs. It possesses a qualification
expression that corresponds to the join condition between two
relations. A GROUPBY operator has one child as an input and
has a set of grouping columns that should be logically
grouped to compute the output relation. The output of the

US 9,171,041 B1

3

GROUPBY operator may be associated with aggregate func-
tions such as SUM, MIN and COUNT. A COMPRESS opera-
tor has one child, and transforms an uncompressed relation to
a compressed one. A DECOMPRESS operator performs the
reverse function by transforming a compressed relation into
an uncompressed one. For example, a stream of numbers
<5,5,6,6,6,6,1,1> may be RLE compressed to the form <(5,
2),(6,4),(1,2)> where second number represents frequency of
occurrence of the first element (number). The COMPRESS
operation goes from a stream of objects to RLE-compressed
form, whereas the DECOMPRESS operation goes in the
opposite direction.

FIG. 3 is an example of a logical query plan for a query of
the form: SELECT R.r FROM R INNER JOIN T ON
(R.r=T.). Ris arelation, e.g., a table, with one column “R.r”,
where “r” is a column value. Similarly, T is a relation with a
column “T.t”, where “t” is a column value. The GET (R)
operator 302 and the GET (T) operator 304 read values (R.r)
306 and (T.t) 308, respectively. The join operator 310 has a
condition “R.r,=T.t” 312, that determines whether the values
“r” and “t” are equal, and provides the answer to a client 320.

FIG. 4 illustrates a query plan for the same query applied to
a compressed database. The RLE-compressed form of rela-
tion R may be designated R, and has two columns (R..r,
R 1), where the second column corresponds to the frequency
of occurrence “f” of a particular “r” value. Similarly, the
RLE-compressed form of relation T may be designated T
with columns (T.t, T ~.f) where the second column indicates
the frequency of occurrence of the value “t”. In FIG. 4, the
operator GET(R) 402 obtains the values (R.r, R.f) 404 and a
DECOMPRESS operator 406 decompress the values to
obtain the values “r” 408. Similarly, the operator GET(T)
410 obtains the values (T.t, T.f) 412, and a DECOMPRESS
operator 414 decompress the values to obtain the values “t”
416. A JOIN operator 418 having the condition “R.r,=T.t” 420
determines whether the value of “r” and the value of “t”
provided by operators 406 and 414, respectively, are equal,
and provides the answer to a client 430.

The logical query plan of FIG. 4 compares each decom-
pressed value “r” of R with a given decompressed value “t” of
T in the JOIN operation 418, and then repeats this process for
the next decompressed value “t”. Where the value “r” has a
frequency of occurrence of “f,”” and the value “t” has a fre-
quency of occurrence of “f;”, the query is run f, times using
the same value “r” for each of the f, occurrences of the same
value “t”. Thus, the number of times that the query must be
run on the same data is f. multiplied by {,. If, for example, {,=4
and £,=3, the query must be executed on the same data values
4*3=12 times, which is costly, time-consuming and ineffi-
cient. As will be described, the invention identifies certain
patterns in query plans that can be transformed to an opti-
mized plan so that it operates directly on compressed data and
provides the correct answer, thus avoiding multiple repeats of
a query on data that is the same.

A transformation takes an input query plan and produces a
logically equivalent query plan. Every transformation has a
precondition that must be satisfied for the transformation to
be applicable. The precondition is typically expressed as a
pattern tree. If there’s a binding (matching) of the input plan
to the pattern tree, then the transformation is applicable.
FIGS. 5A and 5B illustrate, respectively, a pattern tree and a
simple transformation for JOIN commutativity. The transfor-
mation shown in FIG. 5B of an input query plan binding to the
pattern tree of FIG. 5A merely exchanges the left and right
children 502 and 504 of the JOIN operator 506 as shown at
508 and 510 for the JOIN operator 512. As shown in the

10

15

20

25

30

35

40

45

50

55

60

65

4

figures, both the input plan and the transformation produce
the same result 514, which is a requirement for an acceptable
transformation.

The invention affords patterns and transformations that
enable input query plans, or portions thereof, that bind to
certain patterns and which operate on uncompressed data to
be transformed so that their transformations operate directly
on compressed data to produce the correct answers. While
pattern binding and transformations are generally known,
they have not previously been applied to compressed data.
Known query optimization techniques that are applicable to
queries for uncompressed data are very difficult to apply to
optimize queries that can be used for compressed data and
produce correct answers. The invention identifies those query
plans that can be transformed to operate correctly on com-
pressed data by matching the structures and semantics of
queries to certain predetermined patterns. The invention then
transforms the query plans (and queries) accordingly. Trans-
formations in accordance with the invention take as an input
aquery plan such as illustrated in FIG. 4 which decompresses
relations early in the query so that the query operates on
uncompressed data, and transforms the input query plan to
one that decompresses higher up (later), or avoids decom-
pression altogether, so that the transformed query plan oper-
ates on compressed data. This enables database operations to
work on smaller chunks of compressed data, resulting in
better performance. This process is illustrated in FIGS. 6 and
7.

FIG. 6 illustrates a pattern for an input plan that is similar
to the logical query plan of FIG. 4. As shown, the pattern has
DECOMPRESS operators 602 and 604 early in the query that
decompress compressed data prior to a JOIN operator 610.
This means that the JOIN operates on decompressed data and
that the query must be run multiple times on data values that
are the same, as previously explained.

FIG. 7 illustrates a transformation of the query plan pattern
of FIG. 6 in accordance with an embodiment of the invention,
where the DECOMPRESS operator 700 has been moved
above the JOIN operator 710 so that DECOMPRESS oper-
ates on the results of the JOIN operation. In addition, as
indicated at 720, the second output column of the JOIN opera-
tor multiplies the frequencies ($3*$5) from its left and right
children 722,724, respectively. Notably, the transformed plan
of FIG. 7 produces the same answer 730 as the answer 612
produced by the input query plan of FIG. 6, demonstrating
that the transformation produces a logically equivalent query
that minimizes processing and overall response time to obtain
correct answers.

FIG. 8 illustrates another transformation of the logical
query plan of FIG. 4 that is substantially similar to the trans-
formation illustrated in FIG. 7, except that the transformation
of FIG. 8 eliminates the DECOMPRESS operation altogether
from the plan. As shown in FIG. 8, the output of the JOIN
operation 810 is supplied directly to the client 812, and the
DECOMPRESS operation 820 is moved from the query to the
client. This advantageously further reduces the processing
that the master node of the database must perform, which
improves the database response time to queries. In a large
distributed database, moving decompression to a client can
result in a substantial improvement in query response time.

FIGS. 9A and 9B illustrate, respectively, another input
query plan pattern for use with compressed data, and a cor-
responding transformation of the input plan in accordance
with an embodiment of the invention where the transformed
plan uses a different query operation to work directly on
compressed relations. The pattern of FIG. 9A applies to an
input query on compressed data R of the form: SELECT

US 9,171,041 B1

5

COUNT(*) FROM R GROUP BY R_.r. The pattern has a
DECOMPRESS operator 900 that decompresses compressed
data 910 before it is operated on by a GROUPBY operator
920 which groups the results of a COUNT operation to pro-
vide an answer 940 to the query. The transformation of FIG.
9B changes both the form of the input query as well as its
query operators. The query is transformed to: SELECT SUM
(Re.D) FROM R GROUP BY R .r. As shown, the COUNT
operator 930 is replaced with a SUM operator 942. In the
transformed plan, the GROUPBY operator 946 produces an
answer 948 that is the same as the answer 940 produced by a
query operating on decompressed data. This enables elimi-
nating altogether the DECOMPRESS operator 900 from the
transformed plan so that it operates on compressed data. This
transformation is made possible by the invention because of
the discovery that a COUNT operation on uncompressed data
in the pattern of FIG. 9A is equivalent to a SUM operation on
compressed data in the transformed plan of FIG. 9B.

The foregoing pattern binding and transformation process
of the invention may be applied repeatedly to different por-
tions of'a more complex query plan to optimize those portions
for compressed data and to produce a new overall query plan
that is less costly computationally and that has an improved
response time.

While the foregoing description has been with reference to
particular embodiments of the invention, it will be appreci-
ated by those skilled in the art that modifications to these
embodiments may be made without departing from the prin-
ciples and spirit the invention, the scope of which is defined
by the appended claims.

The invention claimed is:

1. A computer-implemented method comprising:

receiving a query plan that includes a first pattern of query

operators that (i) includes a decompress query operator
followed by another query operator, and (ii) is config-
ured to operate directly on decompressed data;

determining that the first pattern of query operators that (i)

includes the decompress query operator followed by the
other query operator, and (ii) is configured to operate
directly on decompressed data, matches a second pattern
of one or more query operators that (i) does not include
a decompress query operator, and (ii) is configured to
operate directly on compressed data;

obtaining a transformed query plan by replacing, in the

query plan, the first pattern of query operators that (i)
includes the decompress operator followed by the other
query operator, and (ii) is configured to operate on
decompressed data, with the second pattern of one or
more query operators that (i) does not include the
decompress query operator, and (ii) is configured to
operate directly on compressed data; and

executing the transformed query plan, including executing

the second pattern of one or more query operators that (i)
does not include the decompress operator, and (ii) is
configured to operate directly on compressed data, on
compressed data.

2. The method of claim 1, wherein determining that the first
pattern of query operators matches the second pattern of one
or query operators, comprises determining, based at least on
the (i) structure of the first pattern of query operators and (ii)
semantics of the first pattern of query operators, that the first
query pattern of query operators matches the second pattern
of one or more query operators.

3. The method of claim 1, wherein receiving the query plan
that includes the first pattern of query operators that (i)
includes the decompress query operator followed by another
query operator, and (ii) is configured to operate directly on

10

20

25

30

35

40

45

50

55

60

65

6

decompressed data, comprises receiving a query plan that
includes a first pattern of query operators that (i) includes a
decompress query operator followed by a JOIN operator, and
(ii) is configured to operate directly on decompressed data.

4. The method of claim 3, wherein the one or more query
operators which form the second pattern include the JOIN
operator.

5. The method of claim 1, wherein receiving the query plan
that includes the first pattern of query operators that (i)
includes the decompress query operator followed by another
query operator, and (ii) is configured to operate directly on
decompressed data, comprises receiving a query plan that
includes a first pattern of query operators that (i) includes a
decompress query operator followed by a GROUPBY opera-
tor, and (ii) is configured to operate directly on decompressed
data.

6. The method of claim 5, wherein the first pattern of query
operators further includes a COUNT operator that is associ-
ated with the GROUPBY operator.

7. The method of claim 6, wherein:

replacing, in the query plan, the first pattern of query opera-

tors with the second pattern of one or more query opera-
tors comprises replacing, in the query plan, the COUNT
operator that is associated with the GROUPBY operator
with a SUM operator, and

executing the transformed query plan comprises executing

the GROUPBY operator on a sum of compressed data.

8. The method of claim 1, wherein obtaining the trans-
formed query plan comprises obtaining the transformed
query plan in response to determining that the first pattern of
query operators that (i) includes the decompress query opera-
tor followed by the other query operator, and (ii) is configured
to operate directly on decompressed data, matches the second
pattern of one or more query operators that (i) does not
include a decompress query operator, and (ii) is configured to
operate directly on compressed data.

9. A non-transitory computer-readable medium storing
software comprising instructions executable by one or more
computers which, upon such execution, cause the one or more
computers to perform operations comprising:

receiving a query plan that includes a first pattern of query

operators that (i) includes a decompress query operator
followed by another query operator, and (ii) is config-
ured to operate directly on decompressed data;

determining that the first pattern of query operators that (i)

includes the decompress query operator followed by the
other query operator, and (ii) is configured to operate
directly on decompressed data, matches a second pattern
of one or more query operators that (i) does not include
a decompress query operator, and (ii) is configured to
operate directly on compressed data;

obtaining a transformed query plan by replacing, in the

query plan, the first pattern of query operators that (i)
includes the decompress operator followed by the other
query operator, and (ii) is configured to operate on
decompressed data, with the second pattern of one or
more query operators that (i) does not include the
decompress query operator, and (ii) is configured to
operate directly on compressed data; and

executing the transformed query plan, including executing

the second pattern of one or more query operators that (i)
does not include the decompress operator, and (ii) is
configured to operate directly on compressed data, on
compressed data.

10. The computer-readable medium of claim 9, wherein
determining that the first pattern of query operators matches
the second pattern of one or query operators, comprises deter-

US 9,171,041 B1

7

mining, based at least on the (i) structure of the first pattern of
query operators and (ii) semantics of the first pattern of query
operators, that the first query pattern of query operators
matches the second pattern of one or more operators.

11. The computer-readable medium of claim 9, wherein
receiving the query plan that includes the first pattern of query
operators that (i) includes the decompress query operator
followed by another query operator, and (ii) is configured to
operate directly on decompressed data, comprises receiving a
query plan that includes a first pattern of query operators that
(1) includes a decompress query operator followed by a JOIN
operator, and (ii) is configured to operate directly on decom-
pressed data.

12. The computer-readable medium of claim 11, wherein
the one or more query operators which form the second pat-
tern include the JOIN operator.

13. The computer-readable medium of claim 9, wherein:

receiving the query plan that includes the first pattern of

query operators that (i) includes the decompress query
operator followed by another query operator, and (ii) is
configured to operate directly on decompressed data,
comprises receiving a query plan that includes a first
pattern of query operators that (i) includes a decompress
query operator followed by a GROUPBY operator, and
(ii) is configured to operate directly on decompressed
data,

the first pattern of query operators further includes a

COUNT operator that is associated with the GROUPBY
operatot,

replacing, in the query plan, the first pattern of query opera-

tors with the second pattern of one or more query opera-
tors comprises replacing, in the query plan, the COUNT
operator that is associated with the GROUPBY operator
with a SUM operator, and

15

25

8

executing the transformed query plan comprises executing

the GROUPBY operator on a sum of compressed data.

14. The method of claim 1, wherein receiving the query
plan that includes the first pattern of query operators that (i)
includes the decompress query operator followed by another
query operator, and (ii) is configured to operate directly on
decompressed data, comprises receiving a query plan that
includes a first pattern of query operators that (i) includes a
decompress query operator that is configured to operate on
RLE-compressed relations followed by another query opera-
tor, and (ii) is configured to operate directly on decompressed
data.

15. The computer-readable medium of claim 9, wherein
receiving the query plan that includes the first pattern of query
operators that (i) includes the decompress query operator
followed by another query operator, and (ii) is configured to
operate directly on decompressed data, comprises receiving a
query plan that includes a first pattern of query operators that
(1) includes a decompress query operator that is configured to
operate on RLE-compressed relations followed by another
query operator, and (ii) is configured to operate directly on
decompressed data.

16. The computer-readable medium of claim 9, wherein
obtaining the transformed query plan comprises obtaining the
transformed query plan in response to determining that the
first pattern of query operators that (i) includes the decom-
press query operator followed by the other query operator,
and (ii) is configured to operate directly on decompressed
data, matches the second pattern of one or more query opera-
tors that (i) does not include a decompress query operator, and
(ii) is configured to operate directly on compressed data.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,171,041 Bl Page 1 of 1
APPLICATION NO. : 13/248536

DATED - October 27, 2015

INVENTOR(S) : Sivaramakrishnan Narayanan and Florian Michael Waas

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
In the Claims
Column 5, Lines 58-59, in Claim 2, delete “one or query” and insert -- one or more query --, therefor.
Column 6, Line 67, in Claim 10, delete “one or query” and insert -- one or more query --, therefor.

Column 7, Line 4, in Claim 10, delete “more operators.” and insert -- more query operators. --,
therefor.

Signed and Sealed this
Tenth Day of January, 2017

Dhecbatle K Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

